
 

Abstract 
A nodeless variable element method is 

combined with the flux-based formulation to 
analyze two-dimensional steady-state heat 
transfer problems.  The nodeless variable 
element employs quadratic interpolation 
functions to provide higher solution accuracy 
without requiring additional actual nodes.  The 
flux-based formulation is applied to reduce the 
complexity in deriving the finite element 
equations as compared to the conventional finite 
element method.  The solution accuracy is 
further improved by implementing an adaptive 
meshing technique to generate finite element 
mesh that can adapt and move along with the 
solution behavior.  The effectiveness of the 
combined procedure is evaluated by steady-
state heat transfer problems that have exact 
solutions. 

Keywords:  Flux-based formulation, Adaptive 
finite element method, Heat transfer. 

 

 

1. Introduction 
The finite element method has been 

widely used to solve for the response of 
aerospace structures caused by the thermal 
effect in the past decades [1,2].  The solution 
accuracy is improved by simply refining the finite 
element model using consecutively smaller 
elements until a required convergence is met.  
The solution accuracy can also be improved by 
using the h-method of adaptation where the 
mesh is globally or locally refined or coarsened 
[2-6], or the p-method by increasing or 
decreasing the order of the element interpolation 
functions [7].  Recently, many researchers have 
proposed improved versions of the r-refinement 
method with moving mesh, so that mesh points 
are moved throughout the domain while the 
connectivity of the mesh is kept fixed [8]. 

The objective of this paper is to develop 
a procedure to improve the predicted 
temperature distribution [2] by using an 
alternative finite element method.  The nodeless 
variable finite element is introduced and 
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employed in this paper in order to increase the 
temperature solution accuracy.  The nodeless 
variable finite element uses quadratic 
interpolation functions to describe the 
temperature distribution over the element without 
requiring additional actual nodes.  The paper 
also introduces and implements the flux-based 
formulation to derive the finite element matrices 
for such nodeless variable element.  The flux-
based formulation can simplify the finite element 
computational procedure as compared to the 
conventional finite element method. The 
effectiveness of the combined procedure is also 
evaluated by several steady-state heat transfer 
problems that have exact solutions. 
 
2. Nodeless Finite Element Formulation 

For two-dimensional domain Ω bounded 
by surface S in the x-y coordinate system as 
shown in Fig. 1, the two-dimensional steady-
state energy equation can be written in the 
conservation form as, 
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where Q(x,y) denotes the heat source function.  
The flux components E and F are defined by, 
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where T is the temperature and k is the thermal 
conductivity.  The Poisson’s equation shown in 
Eq. (1) is to be solved together with appropriate 
boundary conditions that may consist of, 
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where h is convection coefficient, T∞ is medium 
temperature for convection, and q is the heat 
flux normal to the surface boundary. 
 

 
Fig. 1.  Two-dimensional domain and boundary 

conditions for problem governed by  
energy equation 

 
The flux-based formulation is used herein 

to derive the finite element equations associated 
with the nodeless variable element.  For the 
triangular nodeless variable element, the 
distribution of the temperature over the element 
is assumed in the form, 
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where ( )⎣ ⎦yxN ,  consists of the element 
interpolation functions, and { }T  is the vector of 
the unknown temperature variables (T1 - T3) and 
the nodeless variables (T4 - T6).  The element 
interpolation functions, N1, N2, N3 are identical to 
the element interpolation functions L1, L2, L3 used 
for the standard three-node triangular element 
[5].  The nodeless variable interpolation 
functions implemented in this paper are, 
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To derive the finite element matrices by means 
of the flux-based formulation, the method of 
weighted residuals is first applied to Eq. (1), 
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 where Ω  is the element domain.  The Gauss’s 
theorem is then applied to the flux derivative 
terms to yield, 
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where S is the element boundary.  Substituting 
Eqs. 7(a)-(b) into Eq. (6) to yield, 
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In the flux-based formulation [2], the 

element flux distributions are computed from the 
actual nodal fluxes as, 
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where ⎣ ⎦N  are the standard linear element 
interpolation functions, i.e., ⎣ ⎦321 LLL .  The 
{ }E  and { }F  are the vectors of the actual 

nodal heat fluxes, 
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Substituting Eq. (10) into Eq. (8), the 

finite element equations are, 
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and A is the element area.  The element nodal 
vector { }R  associated with the source function 
and the vector { }B  representing the boundary 
nodal flux vector are, 
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where l and m are the components of the unit 
vector normal to the element boundary.  The 
vector { }q  appearing in the above Eq. (13) may 
be replaced by different types of boundary 
conditions as shown in Eq. (3b).  The 
interpolation functions in Eq. (13) needed for 
integration along a typical element side s in Fig. 
2 are, 
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where L is the length of element edge and x is 
the local coordinate along the edge starting from 
node 1.  The finite element equations, Eq. (12) 
are derived for all the elements prior to 
assembling to yield the system equations.  
Appropriate boundary conditions of the given 
problem are then applied.  Finally, the system 
equations are iteratively solved for the nodal 
solutions and the nodeless variables using the 
preconditioned conjugate gradients method with 
an element-by-element approximation technique 
[9]. 
 

 
Fig. 2.  Discretization of flux vector q into the actual 

nodes and the nodeless variable  
on a typical element edge. 

 
3. Adaptive Remeshing Technique 

There are two main steps in the 
implementation of the adaptive meshing 
technique, the first step is the determination of 
proper element sizes and the second step is the 
new mesh generation [2,4,5].   The temperature 
variable T is used as the indicator for computing 
proper element sizes at different locations in the 
domain.  As small elements must be placed in 
the region where changes in the primary 



variable gradients are large, the second 
derivatives of the primary variable at a point with 
respect to global coordinates x and y are 
needed.  The maximum principal quantities are 
then used to compute the proper element size 
by requiring that the error should be uniform for 
all elements.  It should also be noted that the 
finite element solutions are closely related to the 
quality of the element shapes.  The mesh 
adaptation technique [4,5] implemented in this 
paper assures to provide good quality of the 
element shapes for all the meshes generated.  
According to the quality criterion presented by 
Ruppert [10], the minimum angle (�) for a 
triangle to assure good element aspect ratio is 
given by, 
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where d denotes the distance.  The value of � 
equals to 60o is used in this paper to calculate 
the element aspect ratio for producing the near-
equilateral triangles in the process of generating 
all adaptive finite element meshes. 
 
4. Algorithm Evaluation 

To evaluate the performance of the 
nodeless variable finite element using the flux-
based formulation with the implementation of the 

adaptive meshing technique, five boundary 
value problems that have exact solutions are 
presented.  These problems consist of solving: 
(1) Laplace equation with Dirichlet boundary 
conditions, (2) Highly heat source along 
diagonal line, and (3) 4-steep gradient cones in 
a square region. 
 
4.1 Laplace equation with Dirichlet  
   boundary conditions 
 

The first example for evaluating the 
performance of the nodeless variable flux-based 
finite element method is to solve the Laplace 
equation ( 02 =∇ U ) with Dirichlet boundary 
conditions.  The problem statement of a 1×1 
square domain with the specified boundary 
conditions is given in Fig. 3.  The exact solution 
for the temperature distribution is, 
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The structured finite element mesh model with 
162 nodeless variable elements (100 nodes) and 
the predicted solution contours are shown in Fig. 
4.  Figure 5 shows good agreement between the 
exact and the predicted solutions along the 
edge y = 0. 
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Fig. 3.   Problem statement of the Laplace  

equation with Dirichlet boundary conditions. 
 

 
Fig. 4.   Problem statement of the Laplace  

equation with Dirichlet boundary conditions. 
 

 
Fig. 5.   Problem statement of the Laplace  

equation with Dirichlet boundary conditions. 
 
4.2 Highly heat source along diagonal line 
 

The Poisson's equation and the 
boundary conditions, that produce a solution 
with high diagonal gradient in a square region, 
are shown in Fig. 6.  The exact solution [2,11] as 

given by Eq. (17) has been chosen to give zero 
values on the boundary and exhibit a sharp 
transition of gradients along a region near the 
diagonal of the domain, 
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where 8.0)(2 −+= yxβ . 
 

 
Fig. 6.   Governing equation, boundary conditions, and 

solution contours for a highly heat source  
along diagonal line problem. 

 

 
Fig. 7.   Uniform and adaptive meshes with their 

solution contours for a highly heat source  
along diagonal line problem. 

 
The nodeless variable finite element 

solutions on adaptive meshes, and the 
conventional finite element solution using the 
standard quadratic elements on a uniformly 
structured mesh, are shown in Fig. 7.  Figure 8 



shows the comparison of the exact and the 
predicted solutions obtained from the nodeless 
variable finite element method using the 
adaptive meshes, and from the conventional 
finite element method using the standard 
quadratic elements on the uniformly structured 
mesh.  The figure indicates that, in order to 
obtain the solution accuracy nearly at the same 
level as provided by the third adaptive mesh, a 
uniformly structured mesh (80×80 intervals) with 
at least 12,800 quadratic finite elements is 
required. 

 

 
Fig. 8.   Comparison of the exact and the predicted 

solutions for a highly heat source along  
diagonal line problem. 

 
4.3 4-steep gradient cones in a square region 
 

The governing equation and the 
boundary conditions, that generate a solution of 
the 4-steep heat gradient cones in a square 
region, are shown in Fig. 9.  The exact solution 
with zero values on the boundary and exhibits 4-
steep gradient cones is given by, 
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The nodeless variable finite element 

solutions using the initial and the third adaptive 
meshes are shown in Fig. 10.  Figure 11 shows 
the comparison of the exact and the predicted 
solutions obtained from the nodeless variable 
finite element method using the adaptive 
meshes.  For this example, a uniformly 
structured mesh (120×120 intervals) with at 
least 28,800 quadratic finite elements is required 
in order to produce the solution accuracy nearly 
at the same level as provided by the third 
adaptive mesh. 

 

 
Fig. 9.  Governing equation, boundary conditions, and 

solution contours for 4-steep gradient cones in a square 
region problem. 

 
 



 
Fig. 10.  Initial and adaptive meshes with their solution 

contours for a 4-steep gradient cones  
in a square region problem. 

 

 
Fig. 11.  Comparison of the exact and the predicted 

solutions for a 4-steep gradient cones in  
a square region problem. 

 
5. Conclusions 

The nodeless variable flux-based finite 
element method was developed to solve the 
two-dimensional energy equation.  The nodeless 
variable finite element and its interpolation 
functions were described.  The flux-based 
formulation was developed and applied to the 
nodeless variable finite element for reducing the 
computational complexity as compared to the 
conventional finite element method.  The solution 
accuracy was further improved by implementing 

an adaptive meshing technique.  The 
performance of the combined procedure was 
evaluated by using five boundary value 
problems that have exact solutions.  These 
problems demonstrate that the combined 
nodeless variable flux-based finite element 
method and the adaptive meshing technique 
helps increasing the analysis solution accuracy, 
and at the same time, reducing the total number 
of unknowns as compared to the standard 
nonadaptive finite element method. 
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