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Abstract

This paper describes the concept of a 
dynamic algorithm for constructing two-
dimensional triangular meshes using the 
Delaunay triangulation with adaptive remeshing 
feature.  The complexity of the geometry both 
simply connected and multi-boundaries domains 
are completely arbitrary.  Laplacian smoothing 
technique is applied to further improve the 
shape and size of triangular meshes. Some 
examples are presented to highlight capability of 
the proposed algorithm.
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1. Introduction

The computational mechanics applications 
using finite element or finite volume methods 
require discretization of the domain over which a 
set of governing equations is to be solved.  
Because of arbitrarily shape of domain, 

improved general-purpose mesh generation 
algorithms have been still in great demand 
especially for 3D applications [1-2].  Because of 
varieties arbitrarily shape of domain, the 
unstructured mesh can provide multiscale 
resolution and conformity to complex geometries 
comparing to the structured mesh.

On the unstructured mesh approach, two 
methods have proved particularly successful 
and are widely used today.  Firstly, the 
advancing front method, the triangles are built 
progressively inward from the boundaries of 
domain until the domain area is filled with 
triangles [3].  Secondly, the Delaunay 
triangulation method, the popular meshing 
technique [4] that utilizes the Delaunay criterion.  
The Delaunay criterion in itself, is not a meshing 
technique.  It provides the criteria for which to 
connect a set of existing points in space, 
normally are boundary points.  Therefore, the 
point creating technique is required in addition, 
to refine the triangles.  The refinement technique 



presented in this paper, follows the Marcum and 
Weatherill approach [5] which is widely used in 
engineering applications. The triangle aspect 
ratios are improved by applying the Laplacian 
smoothing technique that moves each node of 
triangles to the centroid of all triangles around 
the node. Then, the adaptive meshing technique 
developed herein generates small elements in 
regions with large change in solution gradients, 
and at the same time, larger elements in the 
other regions to reduce the required computer 
memory and the computational time.

To demonstrate the advantages of the 
method proposed, this paper first describes the 
concept behind the Delaunay triangulation.  The 
mesh generation procedure is then proposed 
with automatic point creation procedure.  The 
Laplacian smoothing technique is then 
described to perform mesh smoothing.  A 
number of complex geometries are then used to 
evaluate the capacity and effectiveness of the 
proposed method. Then the adaptive meshing 
technique with new implementation procedure in 
an objected-oriented programming is described 
in detail. Finally, efficiency of the combined 
procedure is evaluated by analyzing several 
computational mechanics examples.

2. Delaunay Triangulation and Mesh Adaptation

Dirichlet [6-7] proposed a method to 
construct Dirichlet tessellation or Voronoi 
diagram, where as a domain could be 
decomposed into a set of packed convex 
triangles.  For a given set of points in space,

nkPk ,,1},{ K= , the regions nkVk ,,1},{ K= , 

are the boundaries which can be assigned to 
each point }{ kP , represent the space closer to
}{ kP than to any other points in the set.  

Therefore, these regions satisfy,

{ }jk, P pP p pV jkk ≠∀−<−×∈= :RR (1)

where RR ×∈p . If all the points which have 
some segment of a Voronoi boundary in 
common are joined, the result is a Delaunay 
triangulation.  In Graph theory, Delaunay 
triangulation could be defined that the graph 
which any circle in the plane is said to be empty 
if it contains no vertex in its interior. This defining 
characteristic of Delaunay triangles, in Fig. 1, is 
called the empty circumcircle property.

Fig. 1. Delaunay triangles have an empty circumcircle 
property



To ensure that all triangles are satisfy the 
Delaunay property, the every edge of all 
triangles must be locally Delaunay as shown in 
Fig. 2.  The edge ab is locally Delaunay if: (a) it 
belongs to only one triangle and therefore 
bounds the convex hull and (b) it belongs to only 
two triangles, abc and adb, and d lies out of the 
circumcircle of abc.

Figure 3 shows two triangles, adc and bcd, 
are not locally Delaunay and the corresponding 
internal angles are 2221 ,, γδαα + , and

1121 ,, δγββ + , respectively. Meanwhile two 
triangles, abc and adb, are locally Delaunay and 
the corresponding internal angles are

2111 ,, γγβα + , and 2212 ,, βδδα + , respectively. 
By using some geometry relations, the relations 
between these internal angles are
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This property of locally Delaunay triangle is 
called Max-Min angle property [8].

Fig. 2. The edge ab is locally Delaunay

Fig. 3. Internal angles of triangles

The prior works that brought Delaunay 
triangulation into practical were introduced by 
Bowyer [6] and Watson [7] called Bowyer/ 
Watson algorithm.  In this algorithm, when a new 
vertex is inserted, each triangle whose 
circumcircle contains the new point is no longer
Delaunay (in-circle criterion) and is thus deleted 
all other triangles remain Delaunay are left 
undisturbed.  Each point of the insertion 
polyhedron is then connected to the new point 
creating a new edge. The algorithm used to 
generate Delaunay triangulation has two steps 
for two-dimensional domain.  Firstly, forming 
triangles by connected points on the boundaries 
of domain called boundary triangle generation.  
Secondly, creating points inside domain to refine 
triangles of previous step to conform our desired 
in both shape and size. The Delaunay 
triangulation algorithm that used to construct 
boundary triangle in this paper is based on the 
in-circle criterion according to Bowyer.  The 



object-oriented algorithm is described as the 
algorithm I below.

Algorithm I:

DelaunayTriangulation(P, T, p)

Let P0 be the collection of node objects;
Let T0 be the collection of triangle objects;

P0.Initialize;
T0.Initialize;
t← T.FindTriangleContainNode(p);
T0← T.IncircleTriangles(t, p);
P0← T0.DestroyTriangles();
T.CreateNewTriangles(P0, p);
T.AssignNeighborhoodTriangles;

End;

The Delaunay triangulation algorithm that 
described above does not suggest how to 
create points inside the domain.  Many 
researchers introduced approaches how to 
create points inside the domain, to refine 
boundary triangles that number of methods use 
the set of boundary points to guide point 
placement [9-10].  The automatic point creation 
procedure in this paper derived from the 
algorithm suggested by Marcum and Weatherill 
[5]. The shape and size of triangles or density of 
points inside domain that created by this 
scheme control by two coefficients.  Alpha 
coefficient controls point density by changing 

the allowable shape of formed triangles and 
Beta coefficient controls the regularity of the 
triangulation by not allowing point within a 
specified distance of each other to be inserted 
in the same sweep of the triangles within the 
field.  The combination of Alpha and Beta 
coefficients cause shape and size triangles 
varies.  The suggested values of Alpha and Beta 
coefficients for coarse and refine triangular 
mesh are 0.8 and 0.9, and 0.5 and 0.6
respectively. The implementation of automatic 
point creation scheme are described in 
algorithm II.

Algorithm II:

MeshRefinement(P, T, alpha, beta, iteration)
Let P0 be the collection of node objects;

For i=1 To iteration {
Do t← T.NextTriangle {

p← t.ComputeTriangleCentroid();
p.dp ← t.ComputePointDistribution();
p.dm(1:3) ← t.CentroidToVertices();
p.Rejected = FALSE;
For j=1 To 3 {
If (p.dm(j) < (alpha * p.dp)) {

p.Rejected = TRUE;
Break;

};
};
If (Not p.Rejected) {
P0.Initialize;



P0← T.FindInsertedNodeNearestTriangles;
Do p1← P0.NextNode {
If (distance(p, p1) < (beta * p.dp)) {

p.Rejected = TRUE;
Break;
};

};
};
If (Not p.Rejected)
P.AddNodeAsInsertedNode(p);

};
Do p← P.NextInsertedNode {

Call DelaunayTriangulation(P, T, p);
};

};

End;

Since the proposed algorithm above does not 
guarantee the good mesh topology, the mesh 
relaxation [12] based on an edge-swapping 
technique is highly recommended for well-
shaped mesh improvement.  The objective of 
this method is to make the topology of elements 
closer to equilateral triangles by swapping 
edges to equalize the vertex degrees (number of 
edges linked to each point) toward the value of 
six.
Finally, shapes and sizes of triangles formed 

from the previous step can be improved by 
applying a mesh smoothing technique.  This 
paper uses the Laplacian smoothing technique 

because of less computational time requirement.  
The point repositioning formula is derived from 
the finite difference approximation of the 
Laplace's equation.  Each interior node is moved 
successively to the centroid of the area which is 
formed by connecting neighbouring nodes.  
Several passes are made through the entire set 
of all interior nodes to produce optimized shape 
and size of the triangles.  The new node 
locations using the Laplacian smoothing are 
computed from,
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Lastly, the remeshing technique generates an 
entirely new mesh based on the solution 
obtained from a previous mesh.  The technique 
was first introduced and applied for high-speed 
compressible flow analysis [11].  There are two 
main steps in the implementation of the adaptive 
remeshing technique; the first step is the 
determination of proper element sizes and the 
second step is the new mesh generation.
To capture steep gradients of the solution, 

small elements are needed along that region in 
the domain.  The proper element size hi is 
computed by requiring that the error should be 
uniform for all elements:

constantmax
2
min

2 == hh ii (4)
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principal quantity of the element considered, 
and φ is the selected solution indicator.  The 
regions, which will be refined or coarsened by 
AdaptiveMeshing algorithm below, are identified 
by a dimensionless error indicator using the 
pressure-switch coefficient.  The indicator at 
node I is given by,
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where Jand Kare the other two nodes of the 
triangle, e, ))(,max(*

JIJIA φφαφφ +−= and  
))(,max(*

KIKIB φφαφφ +−= .  The value of α
is used to identify the solution discontinuity or 
numerical oscillation.  According to numerical 
experiment especially for the proposed scheme 
that will be explained later, the value of α is 
prescribed as 0.005 in this paper.  This means

)(005.0*
JIA φφ += and )(005.0*

KIB φφ +=

if Jφ and Kφ are oscillated within 1% of Iφ , 

respectively.
Practical experience found that this type of 

error indicator for complex problems where 
regions such as shock or discontinuity have 
different strength may cause inaccurate solution 
from inadequate refinement because the point 
spacing is scaled according to the maximum 

value of the second derivatives. To overcome 
this problem, an element size scaling function, 
which scales the point spacing of point iP

between minimum and maximum element sizes,
minh and maxh within the range of minχ and maxχ

has been used,
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where idp is nodal distribution value of node i. 
The coefficient iχ controls the point insertion in 
the regions of high solution gradient and 
eliminates undue distortion of the triangle 
regularity. The value of minχ limits number of 
points insertion in high gradient region such as 
shock, while the value of upper limit maxχ allows 
more points to be inserted into the lower solution 
gradient region. As shapes of adapted elements 
generated by this function may be distorted, the 
Alpha and Beta coefficients are incorporated as 
coefficients of such function to control point 
density and the regularity of triangulation. The 
concept of how to implementation Eqs.(4)-(6) 
can be illustrated by Fig. 4.



Fig. 4. Element size determination concept

Algorithm III:

AdaptiveRemeshing(P, T, P0, Hmin, Hmax, threshold)
Do {
Do p← P0.NextInteriorNode {

If (p.hi ≤Hmax) {
t← T.FindTriangleContainNode(p);
pq← t.ComputeTriangleCentroid();
pq.dp ← t.ComputePointDistribution();

pq.dm(1:3) ← t.CentroidToVertices();
pq.Rejected = FALSE;
For j=1 To 3 {
If (pq.hi > pq.dm.Average Or pq.dm(j) < 

Hmin) {
pq.Rejected = TRUE;

Break;
};

};
If (Not pq.Rejected) P.AddNode(pq);
};

};

Do p← P.NextInsertedNode {
Call DelaunayTriangulation(P, T, p);

};

} Loop Until (P.InsertedNodes <= threshold);

End;

3. Examples

To evaluate the performance of the adaptive 
meshing technique with the Delaunay 
triangulation, the specification of element size,
ih , is given as an analytic function defined for 
two-dimensional domain.   The adaptive mesh 
generation process starts from an initial mesh 
generated in the domain, then the values of the 
element sizes at all points are computed by the 
given function.  The mesh generation coupled 
with the adaptive meshing procedure is iterated 
until the resulting mesh becomes globally stable.  
The iteration process is terminated if the total 
node increment is fewer than the specified 
number.  The one example of mesh generation 
and two examples of adaptive mesh generation 
with the analytical function for specifying 
element sizes presented herein are: (1) Airfoil 
NACA 0012 (2) adaptive meshes along the 
centerline of a rectangular domain, and (3) an 
alpha-shape adaptive meshes in a square 
domain.



Fig. 5. Mesh generation of airfoil 
NACA 0012 configuration

Fig. 6. Mesh improvement with Laplacian 
smoothing technique

3.1 Airfoil NACA 0012

To demonstrate the efficiency of the Delaunay 
triangulation algorithm and the Laplacian 
smoothing technique, Fig. 5 shows the progress 
of the domain discretization refinement for the 
airfoil NACA 0012.  The geometry consists of 

one airfoil shape surrounding by circular 
boundary of the domain.  Figure 6 shows the 
mesh quality improvement with the Laplacian 
smoothing technique.

3.2 Adaptive Meshes along the Centerline of a 

Rectangular Domain

The second example presents an adaptive 
mesh generation in a 3.0 × 5.0 rectangular 
domain.  The element sizes at points in the 
domain are given by the distribution function,
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where y is the variable and the values of µ and 
σ are constants equal to zero and one, 
respectively.  Figure 7 shows the series of 
adaptive meshes generated by three iterations 
based on a coarse initial mesh.  The value of 
mesh generation coefficients, α, β, minχ , maxχ

are 0.5, 0.6, 0.75, and 1.10, respectively.  Due to 
the prescribed distribution function in Eq. (7), 
small element sizes are specified around the 
centerline of the domain.  The figure shows that 
size similarity of the adaptive meshes is 
generated along the narrow band around the 
centerline of the domain.  The value of minχ

limits the number of point insertion along the 
centerline of the domain, while the value of maxχ

allows more nodes to be inserted into the other 
regions. The specification of scale range and



minχ , maxχ have strong effects on the resulting 
meshes as shown in Fig. 7.  Without the scale 
range, the mesh is composed of small elements 
concentrated around centerline with 
progressively larger elements outwards as

cba hhh ,< .  Hence, a mesh consisting of 
relatively uniform elements in a wider centerline 
band of the domain may be generated.  This 
mesh has better physical correlation with the 
behaviors of shocks.  The scale range function 
sorts the nodal spacing values into prescribed 
intervals according to minχ and maxχ .  In each 
interval, the generated element sizes are 
relatively uniform.

Fig. 7. Adaptive Meshes along the Centerline of a 
Rectangular Domain

3.3 Alpha-Shape Adaptive Meshes in a Square 

Domain

The third example presents an alpha-shape 
adaptive mesh generation in a square domain.  
The alpha shape function [13] is used to 
calculate element sizes in an 8 × 8 square 
domain:
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where the value of parameter λ is determined 
from 03223 =−+− xyx λ .  Figure 4 shows the



sequence of four adaptive meshes generated 
from a coarse initial mesh.  The value of mesh 
generation coefficients, α, β, minχ , maxχ are 0.5, 
0.6, 0.5, and 0.85, respectively.  The smaller 
elements are generated along the alpha-shape 
in the domain while larger elements are 
generated in the other regions.

Fig. 4. An alpha-shape adaptive meshes in a square 
domain

The application of finite element and finite 
volume methods for solving continuum problems 
such as solid mechanics, heat transfer, and fluid 
flow problems incorporate with the mesh 
generation algorithms and adaptive remeshing 

technique as described above had been 
reported by Refs.[14-20].  

4.  Conclusions

This paper has discussed a method to 
construct unstructured mesh of triangles based 
on Delaunay triangulation.  Mesh refinement 
algorithm has been suggested by automatic 
point creation scheme.  The adaptive remeshing 
technique was described in detail with the 
pseudo-code presented in object-oriented 
programming concept.  To capture fast 
variations of the solution effectively, a new 
element size scaling function was introduced 
into the adaptive remeshing technique.  The 
combined algorithm was evaluated by 
generating triangular meshes and adaptive 
meshes for three examples with prescribed 
element size functions.
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