
Delaunay Adaptive Remeshing Technique for

Finite Element/Finite Volume Methods

Sutthisak Phongthanapanich*

Department of Mechanical Engineering Technology, College of Industrial Technology,
King Mongkut�s University of Technology North Bangkok, Bangkok 10800, Thailand

*E-mail: sutthisakp@kmutnb.ac.th

Abstract

This paper describes the concept of a
dynamic algorithm for constructing two-
dimensional triangular meshes using the
Delaunay triangulation with adaptive remeshing
feature. The complexity of the geometry both
simply connected and multi-boundaries domains
are completely arbitrary. Laplacian smoothing
technique is applied to further improve the
shape and size of triangular meshes. Some
examples are presented to highlight capability of
the proposed algorithm.

Keywords: Adaptive Remeshing, Delaunay
triangulation, Mesh generation

1. Introduction

The computational mechanics applications
using finite element or finite volume methods
require discretization of the domain over which a
set of governing equations is to be solved.
Because of arbitrarily shape of domain,

improved general-purpose mesh generation
algorithms have been still in great demand
especially for 3D applications [1-2]. Because of
varieties arbitrarily shape of domain, the
unstructured mesh can provide multiscale
resolution and conformity to complex geometries
comparing to the structured mesh.

On the unstructured mesh approach, two
methods have proved particularly successful
and are widely used today. Firstly, the
advancing front method, the triangles are built
progressively inward from the boundaries of
domain until the domain area is filled with
triangles [3]. Secondly, the Delaunay
triangulation method, the popular meshing
technique [4] that utilizes the Delaunay criterion.
The Delaunay criterion in itself, is not a meshing
technique. It provides the criteria for which to
connect a set of existing points in space,
normally are boundary points. Therefore, the
point creating technique is required in addition,
to refine the triangles. The refinement technique

presented in this paper, follows the Marcum and
Weatherill approach [5] which is widely used in
engineering applications. The triangle aspect
ratios are improved by applying the Laplacian
smoothing technique that moves each node of
triangles to the centroid of all triangles around
the node. Then, the adaptive meshing technique
developed herein generates small elements in
regions with large change in solution gradients,
and at the same time, larger elements in the
other regions to reduce the required computer
memory and the computational time.

To demonstrate the advantages of the
method proposed, this paper first describes the
concept behind the Delaunay triangulation. The
mesh generation procedure is then proposed
with automatic point creation procedure. The
Laplacian smoothing technique is then
described to perform mesh smoothing. A
number of complex geometries are then used to
evaluate the capacity and effectiveness of the
proposed method. Then the adaptive meshing
technique with new implementation procedure in
an objected-oriented programming is described
in detail. Finally, efficiency of the combined
procedure is evaluated by analyzing several
computational mechanics examples.

2. Delaunay Triangulation and Mesh Adaptation

Dirichlet [6-7] proposed a method to
construct Dirichlet tessellation or Voronoi
diagram, where as a domain could be
decomposed into a set of packed convex
triangles. For a given set of points in space,

nkPk ,,1},{ K= , the regions nkVk ,,1},{ K= ,

are the boundaries which can be assigned to
each point }{ kP , represent the space closer to
}{ kP than to any other points in the set.

Therefore, these regions satisfy,

{ }jk, P pP p pV jkk ≠∀−<−×∈= :RR (1)

where RR ×∈p . If all the points which have
some segment of a Voronoi boundary in
common are joined, the result is a Delaunay
triangulation. In Graph theory, Delaunay
triangulation could be defined that the graph
which any circle in the plane is said to be empty
if it contains no vertex in its interior. This defining
characteristic of Delaunay triangles, in Fig. 1, is
called the empty circumcircle property.

Fig. 1. Delaunay triangles have an empty circumcircle
property

To ensure that all triangles are satisfy the
Delaunay property, the every edge of all
triangles must be locally Delaunay as shown in
Fig. 2. The edge ab is locally Delaunay if: (a) it
belongs to only one triangle and therefore
bounds the convex hull and (b) it belongs to only
two triangles, abc and adb, and d lies out of the
circumcircle of abc.

Figure 3 shows two triangles, adc and bcd,
are not locally Delaunay and the corresponding
internal angles are 2221 ,, γδαα + , and

1121 ,, δγββ + , respectively. Meanwhile two
triangles, abc and adb, are locally Delaunay and
the corresponding internal angles are

2111 ,, γγβα + , and 2212 ,, βδδα + , respectively.
By using some geometry relations, the relations
between these internal angles are

21

22

21

11

αγ
βγ
δβ
δα

≥
≥
≥
≥

(2)

This property of locally Delaunay triangle is
called Max-Min angle property [8].

Fig. 2. The edge ab is locally Delaunay

Fig. 3. Internal angles of triangles

The prior works that brought Delaunay
triangulation into practical were introduced by
Bowyer [6] and Watson [7] called Bowyer/
Watson algorithm. In this algorithm, when a new
vertex is inserted, each triangle whose
circumcircle contains the new point is no longer
Delaunay (in-circle criterion) and is thus deleted
all other triangles remain Delaunay are left
undisturbed. Each point of the insertion
polyhedron is then connected to the new point
creating a new edge. The algorithm used to
generate Delaunay triangulation has two steps
for two-dimensional domain. Firstly, forming
triangles by connected points on the boundaries
of domain called boundary triangle generation.
Secondly, creating points inside domain to refine
triangles of previous step to conform our desired
in both shape and size. The Delaunay
triangulation algorithm that used to construct
boundary triangle in this paper is based on the
in-circle criterion according to Bowyer. The

object-oriented algorithm is described as the
algorithm I below.

Algorithm I:

DelaunayTriangulation(P, T, p)

Let P0 be the collection of node objects;
Let T0 be the collection of triangle objects;

P0.Initialize;
T0.Initialize;
t← T.FindTriangleContainNode(p);
T0← T.IncircleTriangles(t, p);
P0← T0.DestroyTriangles();
T.CreateNewTriangles(P0, p);
T.AssignNeighborhoodTriangles;

End;

The Delaunay triangulation algorithm that
described above does not suggest how to
create points inside the domain. Many
researchers introduced approaches how to
create points inside the domain, to refine
boundary triangles that number of methods use
the set of boundary points to guide point
placement [9-10]. The automatic point creation
procedure in this paper derived from the
algorithm suggested by Marcum and Weatherill
[5]. The shape and size of triangles or density of
points inside domain that created by this
scheme control by two coefficients. Alpha
coefficient controls point density by changing

the allowable shape of formed triangles and
Beta coefficient controls the regularity of the
triangulation by not allowing point within a
specified distance of each other to be inserted
in the same sweep of the triangles within the
field. The combination of Alpha and Beta
coefficients cause shape and size triangles
varies. The suggested values of Alpha and Beta
coefficients for coarse and refine triangular
mesh are 0.8 and 0.9, and 0.5 and 0.6
respectively. The implementation of automatic
point creation scheme are described in
algorithm II.

Algorithm II:

MeshRefinement(P, T, alpha, beta, iteration)
Let P0 be the collection of node objects;

For i=1 To iteration {
Do t← T.NextTriangle {

p← t.ComputeTriangleCentroid();
p.dp ← t.ComputePointDistribution();
p.dm(1:3) ← t.CentroidToVertices();
p.Rejected = FALSE;
For j=1 To 3 {
If (p.dm(j) < (alpha * p.dp)) {

p.Rejected = TRUE;
Break;

};
};
If (Not p.Rejected) {
P0.Initialize;

P0← T.FindInsertedNodeNearestTriangles;
Do p1← P0.NextNode {
If (distance(p, p1) < (beta * p.dp)) {

p.Rejected = TRUE;
Break;
};

};
};
If (Not p.Rejected)
P.AddNodeAsInsertedNode(p);

};
Do p← P.NextInsertedNode {

Call DelaunayTriangulation(P, T, p);
};

};

End;

Since the proposed algorithm above does not
guarantee the good mesh topology, the mesh
relaxation [12] based on an edge-swapping
technique is highly recommended for well-
shaped mesh improvement. The objective of
this method is to make the topology of elements
closer to equilateral triangles by swapping
edges to equalize the vertex degrees (number of
edges linked to each point) toward the value of
six.
Finally, shapes and sizes of triangles formed

from the previous step can be improved by
applying a mesh smoothing technique. This
paper uses the Laplacian smoothing technique

because of less computational time requirement.
The point repositioning formula is derived from
the finite difference approximation of the
Laplace's equation. Each interior node is moved
successively to the centroid of the area which is
formed by connecting neighbouring nodes.
Several passes are made through the entire set
of all interior nodes to produce optimized shape
and size of the triangles. The new node
locations using the Laplacian smoothing are
computed from,

M1,2,...,i
M

y
yand

M

x
x

M

1i
i

ic

M

1i
i

ic =
∑

=
∑

= == (3)

Lastly, the remeshing technique generates an
entirely new mesh based on the solution
obtained from a previous mesh. The technique
was first introduced and applied for high-speed
compressible flow analysis [11]. There are two
main steps in the implementation of the adaptive
remeshing technique; the first step is the
determination of proper element sizes and the
second step is the new mesh generation.
To capture steep gradients of the solution,

small elements are needed along that region in
the domain. The proper element size hi is
computed by requiring that the error should be
uniform for all elements:

constantmax
2
min

2 == hh ii (4)

where

∂
∂

∂
∂

= 2

2

2

2

max
Y

,
Xi

φφ is the higher

principal quantity of the element considered,
and φ is the selected solution indicator. The
regions, which will be refined or coarsened by
AdaptiveMeshing algorithm below, are identified
by a dimensionless error indicator using the
pressure-switch coefficient. The indicator at
node I is given by,

∑

∑

∈

∈

+

−−
=

Ie

Ie
KJI

I

BA
E

)(

2

**

φφφ
(5)

where Jand Kare the other two nodes of the
triangle, e,))(,max(*

JIJIA φφαφφ +−= and
))(,max(*

KIKIB φφαφφ +−= . The value of α
is used to identify the solution discontinuity or
numerical oscillation. According to numerical
experiment especially for the proposed scheme
that will be explained later, the value of α is
prescribed as 0.005 in this paper. This means

)(005.0*
JIA φφ += and)(005.0*

KIB φφ +=

if Jφ and Kφ are oscillated within 1% of Iφ ,

respectively.
Practical experience found that this type of

error indicator for complex problems where
regions such as shock or discontinuity have
different strength may cause inaccurate solution
from inadequate refinement because the point
spacing is scaled according to the maximum

value of the second derivatives. To overcome
this problem, an element size scaling function,
which scales the point spacing of point iP

between minimum and maximum element sizes,
minh and maxh within the range of minχ and maxχ

has been used,

−
−

= maxmin
minmax

max ,,1,0,Scale χχχ
hh
dph i

i (6)

where idp is nodal distribution value of node i.
The coefficient iχ controls the point insertion in
the regions of high solution gradient and
eliminates undue distortion of the triangle
regularity. The value of minχ limits number of
points insertion in high gradient region such as
shock, while the value of upper limit maxχ allows
more points to be inserted into the lower solution
gradient region. As shapes of adapted elements
generated by this function may be distorted, the
Alpha and Beta coefficients are incorporated as
coefficients of such function to control point
density and the regularity of triangulation. The
concept of how to implementation Eqs.(4)-(6)
can be illustrated by Fig. 4.

Fig. 4. Element size determination concept

Algorithm III:

AdaptiveRemeshing(P, T, P0, Hmin, Hmax, threshold)
Do {
Do p← P0.NextInteriorNode {

If (p.hi ≤Hmax) {
t← T.FindTriangleContainNode(p);
pq← t.ComputeTriangleCentroid();
pq.dp ← t.ComputePointDistribution();

pq.dm(1:3) ← t.CentroidToVertices();
pq.Rejected = FALSE;
For j=1 To 3 {
If (pq.hi > pq.dm.Average Or pq.dm(j) <

Hmin) {
pq.Rejected = TRUE;

Break;
};

};
If (Not pq.Rejected) P.AddNode(pq);
};

};

Do p← P.NextInsertedNode {
Call DelaunayTriangulation(P, T, p);

};

} Loop Until (P.InsertedNodes <= threshold);

End;

3. Examples

To evaluate the performance of the adaptive
meshing technique with the Delaunay
triangulation, the specification of element size,
ih , is given as an analytic function defined for
two-dimensional domain. The adaptive mesh
generation process starts from an initial mesh
generated in the domain, then the values of the
element sizes at all points are computed by the
given function. The mesh generation coupled
with the adaptive meshing procedure is iterated
until the resulting mesh becomes globally stable.
The iteration process is terminated if the total
node increment is fewer than the specified
number. The one example of mesh generation
and two examples of adaptive mesh generation
with the analytical function for specifying
element sizes presented herein are: (1) Airfoil
NACA 0012 (2) adaptive meshes along the
centerline of a rectangular domain, and (3) an
alpha-shape adaptive meshes in a square
domain.

Fig. 5. Mesh generation of airfoil
NACA 0012 configuration

Fig. 6. Mesh improvement with Laplacian
smoothing technique

3.1 Airfoil NACA 0012

To demonstrate the efficiency of the Delaunay
triangulation algorithm and the Laplacian
smoothing technique, Fig. 5 shows the progress
of the domain discretization refinement for the
airfoil NACA 0012. The geometry consists of

one airfoil shape surrounding by circular
boundary of the domain. Figure 6 shows the
mesh quality improvement with the Laplacian
smoothing technique.

3.2 Adaptive Meshes along the Centerline of a

Rectangular Domain

The second example presents an adaptive
mesh generation in a 3.0 × 5.0 rectangular
domain. The element sizes at points in the
domain are given by the distribution function,

2

2

2
142.0)(

 −

−
−= σ

µ

σπ

y

eyh (7)

where y is the variable and the values of µ and
σ are constants equal to zero and one,
respectively. Figure 7 shows the series of
adaptive meshes generated by three iterations
based on a coarse initial mesh. The value of
mesh generation coefficients, α, β, minχ , maxχ

are 0.5, 0.6, 0.75, and 1.10, respectively. Due to
the prescribed distribution function in Eq. (7),
small element sizes are specified around the
centerline of the domain. The figure shows that
size similarity of the adaptive meshes is
generated along the narrow band around the
centerline of the domain. The value of minχ

limits the number of point insertion along the
centerline of the domain, while the value of maxχ

allows more nodes to be inserted into the other
regions. The specification of scale range and

minχ , maxχ have strong effects on the resulting
meshes as shown in Fig. 7. Without the scale
range, the mesh is composed of small elements
concentrated around centerline with
progressively larger elements outwards as

cba hhh ,< . Hence, a mesh consisting of
relatively uniform elements in a wider centerline
band of the domain may be generated. This
mesh has better physical correlation with the
behaviors of shocks. The scale range function
sorts the nodal spacing values into prescribed
intervals according to minχ and maxχ . In each
interval, the generated element sizes are
relatively uniform.

Fig. 7. Adaptive Meshes along the Centerline of a
Rectangular Domain

3.3 Alpha-Shape Adaptive Meshes in a Square

Domain

The third example presents an alpha-shape
adaptive mesh generation in a square domain.
The alpha shape function [13] is used to
calculate element sizes in an 8 × 8 square
domain:

()
()

<+−
≥+−

=
1if0.1,01.0)1(2.0min
1if0.1,005.0)1(20min

),(2

3

λλ
λλ.

yxh (8)

where the value of parameter λ is determined
from 03223 =−+− xyx λ . Figure 4 shows the

sequence of four adaptive meshes generated
from a coarse initial mesh. The value of mesh
generation coefficients, α, β, minχ , maxχ are 0.5,
0.6, 0.5, and 0.85, respectively. The smaller
elements are generated along the alpha-shape
in the domain while larger elements are
generated in the other regions.

Fig. 4. An alpha-shape adaptive meshes in a square
domain

The application of finite element and finite
volume methods for solving continuum problems
such as solid mechanics, heat transfer, and fluid
flow problems incorporate with the mesh
generation algorithms and adaptive remeshing

technique as described above had been
reported by Refs.[14-20].

4. Conclusions

This paper has discussed a method to
construct unstructured mesh of triangles based
on Delaunay triangulation. Mesh refinement
algorithm has been suggested by automatic
point creation scheme. The adaptive remeshing
technique was described in detail with the
pseudo-code presented in object-oriented
programming concept. To capture fast
variations of the solution effectively, a new
element size scaling function was introduced
into the adaptive remeshing technique. The
combined algorithm was evaluated by
generating triangular meshes and adaptive
meshes for three examples with prescribed
element size functions.

Acknowledgements

The authors are pleased to acknowledge the
National Metal and Materials Technology Center
(MTEC) for supporting this research work.

References
[1] Geuzaine, C. and Remacle, J.F. (2009)

"Gmsh: A Three-Dimensional Finite Element
Mesh Generator with Built-in Pre- and Post-
Processing Facilities", International Journal
for Numerical Methods in Engineering, Vol.
79, No. 11, 1309-1331.

[2] Kakosimos, K.E. and Assael, M.J. (2009)
"An Efficient 3D mesh Generator based on
Geometry Decomposition", Computers and
Structures, Vol. 87, No. 1-2, 27-3 8.

[3] Lo, S.H. (1985), "A New Mesh Generation
Scheme for Arbitrary Planar Domains",
International Journal for Numerical Methods
in Engineering, Vol. 21, 1403-1426.

[4] Owen, S.J. (1998), "A Survey of
Unstructured Mesh Generation Technology",
Department of Civil and Environmental
Engineering, Carnegie Mellon University,
Pittsburgh.

[5] Marcum, D.L. and Weatherill, N.P. (1995), "A
Procedure for Efficient Generation of
Solution Adapted Unstructured Grids",
Computer Methods in Applied Mechanics
and Engineering, Vol. 127, 259-268.

[6] Bowyer, A. (1981), "Computing Dirichlet
Tessellations", The Computer Journal, Vol.
24, No. 2, 162-166.

[7] Watson, D.F., (1981) "Computing the n-
Dimensional Delaunay Tessellation with

Application to Voronoi Polytopes", The
Computer Journal, Vol. 24, No. 2, 167-172.

[8] Edelsbrunner, H. (2000) "Triangulations and
meshes in Computational Geometry", Acta
Numerica, Vol. 9, 133-213

[9] Jin, H. and Wiberg, N.E. (1990), "Two-
Dimensional Mesh Generation, Adaptive
Remeshing and Refinement", International
Journal for Numerical Methods in
Engineering, Vol. 29, 1501-1526.

[10] Ruppert, J. (1995), "A Delaunay Refinement
Algorithm for Quality 2-Dimensional Mesh
Generation", Journal
of Algorithms, Vol. 8, 548-585.

[11] Peraire, J., Vahdati, M., Morgan, K. and
Zienkiewicz, O.C. (1987), "Adaptive
Remeshing for Compressible Flow
Computations", Journal of Computational
Physics, Vol. 72, 449-466.

[12] Frey, W.H. (1991), "Mesh Relaxation: A New
Technique for Improving Triangulations",
International Journal for Numerical Methods
in Engineering, Vol. 31, 1121-1133.

[13] Borouchaki, H., George, P.L. and
Mohammadi, B. (1997), "Delaunay Mesh
Generation Governed by Metric
Specifications. Part II. Application", Finite
Elements in Analysis and Design, Vol. 25,
pp. 85-109.

[14] Phongthanapanich, S. and Dechaumphai,
P. (2006), "Heat Transfer Analyses by
Means of Flux-based Formulation and Mesh
Adaptation", Engineering Journal of Siam
University, Vol. 12, 1S8.

[15] Phongthanapanich S., Boonmalert, P. and
Dechaumphai, P. (2006), "Characteristic-
based Split Finite Element Algorithm for
Viscous Incompressible Flow Problems",
Engineering Journal of Siam University, Vol.
13, 26-31.

[16] Phongthanapanich S., Chatakom, S. and
Dechaumphai, P. (2006), "Delaunay
Triangulation with Adaptive Meshing
Technique for Crack Propagation Analysis",
Engineering Journal of Siam University, Vol.
13, 1-8.

[17] Phongthanapanich, S. (2009), "Nodeless
Variable Adaptive Finite Element Methods
for Steady-state Heat Transfer Problems",
Engineering Journal of Siam University, Vol.
19, 1S9.

[18] Phongthanapanich, S. and Dechaumphai P.
(2009), "Adaptive Finite Element Method for
Heat Transfer Analysis by Means of Linear
Flux-based Formulation", The Journal of
KMUTNB, Vol. 19, 306S314.

[19] Theeraek P., Phongthanapanich S.,
Dechaumphai P., (2009), "Combined
Adaptive Meshing Technique and Finite

Volume Element Method for Solving
Convection-Diffusion Equation", The Asian
International Journal of Science and
Technology, Vol. 2, 51-58.

[20] S. Phongthanapanich (2010), "J-Domain
Integral Technique for Crack Analysis with
Adaptive Finite Element Method", The
Journal of KMUTNB, Vol. 20, 189-195.

