
Abstract 
This paper presents a combined 

segregated finite element method and 
Streamline Upwind Petrov-Galerkin method 
(SUPG) for solving conjugate heat transfer 
problems where heat conduction in a solid is 
coupled with heat convection in viscous fluid 
flow.  The Streamline Upwind Petrov-Galerkin 
method is used for the analysis of viscous 
thermal flow in the fluid region, while the analysis 
of heat conduction in solid region is performed 
by the Galerkin method.  The method uses the 
three-node triangular element with equal-order 
interpolation functions for all variables of the 
velocity components, the pressure and the 
temperature.  The main advantage of the 
presented method is to consistently couple heat 
transfer along the fluid-solid interface.  Two test 
cases, which are conjugate counter flow heat 
exchanger and conjugate natural convection 
and conduction from heated cylinder in square 
cavity, are selected to evaluate efficiency of the 
presented method. 

 

Keywords: Finite element method, Fractional step 
method, Unsteady incompressible flow 
 

1. Introduction 

Conjugate heat transfer problems are 
encountered in many practical applications, 
where heat conduction in a solid region is 
closely coupled with heat convection in an 
adjacent fluid.  There are many engineering 
problems where conjugate heat transfer should 
be considered such as design of air-cooled 
packaging, heat transfer enhancement by the 
finned surfaces, design of thermal insulation, 
nuclear reactor design, design of solar 
equipment, heat transfer in a cavity with 
thermally conducting wall or internal baffle, etc.  
Most of the studies in this research area, 
however, employ the finite difference and the 
finite volume methods as the numerical tools.  
He et al. [1] studied the conjugate problem 
using an iterative FDM/BEM method for parallel 
plate channel with constant outside temperature.  
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Sugavanam et al. [2] studied a numerical 
investigation of conjugate heat transfer from a 
flush heat source on a conductive board in 
laminar channel flow.  Chen and Han [3] 
presented the solution of a conjugate heat 
transfer problem using a finite difference 
SIMPLE-like algorithm.  Schäfer and Teschauer 
[4] used the finite volume method for analysis of 
both the fluid flow behavior and the solid heat 
transfer with thermal effect.  Kang-Youl Bae et al. 
[5] studied on natural convection in a 
rectangular enclosure by using the finite volume 
method.  The results from these researches 
show that both the finite difference and the finite 
volume methods can perform very well on the 
problems of interest, but some assumptions on 
heat transfer coefficients have to be made in 
order to compute the temperatures along the 
fluid-solid interface.  Furthermore, deter-mination 
of the unknown temperatures and the heat fluxes 
at the fluid-solid interface is normally performed 
in an iterative way, usually through the use of the 
artificial heat transfer coefficient. 

At present, there are very few publications 
for solving the conjugate heat transfer problems  
the finite element method have been proposed 
in the literature.  Misra and Sarkar [6] used the 
standard Galerkin formulation to solve the 
continuity, momentum and energy equations 
simultaneously. 

In this paper, the streamline upwind 
Petrov-Galerkin method [7-8] is selected for the 
analysis of conjugate heat transfer problems. 
The method uses triangular elements with equal-
order interpolation functions for the velocity 
components, the pressure and the temperature.  
A segregated solution algorithm [9-11] is also 
incorporated to solve the unknown variables 
separately for improving the computational 
efficiency.  The main advantages of the 
presented scheme are illustrated and explained 
by using Figs. 1-2. 

Figure 1 shows typical control volumes of 
the fluid and solid cells along the fluid-solid 
interface used by the finite volume method.  In 
the figure, the control volumes 1 and 2 are in the 
fluid region while the control volumes 3 and 4 
are in the solid region.   

 
 
 

 
 
 
 
 
 

Fig. 1. Control volumes across fluid-solid interface  
used by the finite volume method. 
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Fig. 2. Elements across fluid-solid interface in finite 
element method. 

 
Because the heat conduction coefficients 

in solid and fluid regions are different, the 
harmonic mean of the heat conduction 
coefficient along the fluid-solid interface was 
introduced and assumed in the form [12], 
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where sk  and fk  are the heat conduction 
coefficients in the solid and the fluid region, 
respectively.  The heat flux across the fluid-solid 
interface was then calculated using the 
assumed heat conduction coefficient.  For the 
finite element method presented in the paper, 
the elements along the interface are shown in 
Fig. 2.  The use of the finite element method, for 
both fluid and solid regions with common nodes 
along the fluid-solid interface, that provide 
convenience in analysis computation.  At the 

same time, the use of the single finite element 
method in both the regions allows the fluid-solid 
interface temperatures to be computed directly 
without assuming the heat transfer coefficient.  
In addition, the continuity of the heat fluxes 
across the fluid and solid regions along the 
interface is also preserved automatically. 

 This paper starts from briefly describing 
the set of the partial differential equations that 
satisfy the law of conservation of mass, 
momentums and energy.  Corresponding finite 
element equations are derived and the element 
matrices are presented.  The computational 
procedure used in the development of the 
computer program is then described.  Finally, 
the finite element formulation and the computer 
program are then verified by solving several 
examples that have exact solution and numerical 
solutions from other methods. 

 
2. Theoretical formulation and solution 
procedure 
2.1 Governing equations 
 The governing equations for conjugate 
heat transfer problems consist of the 
conservation of mass which is called the 
continuity equation, the conservation of 
momentum in x  and y  directions, and the 
conservation of energy, as follows, 
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where u  and v  are the velocity components in 
the x  and y  direction, respectively,   is the 
density, p  is the pressure,   is the viscosity, 
g  is the gravitational acceleration constant,   
is the volumetric coefficient of thermal 
expansion, T  is the temperature, 0T  is the 
reference temperature for which buoyant force in 
the y -direction vanishes, c  is the specific heat, 
k  is the coefficient of thermal conductivity and 
Q  is the internal heat generation rate per unit 
volume.  Equation (2d) can also be used for 
solving conduction heat transfer in solid by 

setting both velocity components, u  and v , as 
zero. 
 
 
 
 
 

Fig. 3. The two-dimensional,  
element size h  and streamline directions. 

 
2.2  Finite element formulation 
2.2.1  Streamline Upwind Petrov-Galerkin 
method 

The basic idea of the streamline upwind 
method is to add diffusion, which acts only in the 
flow direction.  Extended to a Petrov-Galerkin 
formulation, the standard Galerkin weighting 
functions are modified by adding a streamline 
upwind perturbation, p , for suppressing the 
non-physical spatial oscillation in the numerical 
solution, which again acts only in the flow 
direction.  In this paper, the modified weighting 
function, iW , can be expressed as, [8] 

iW    =   iN p     (3) 

iW    =   
2

i i
i

N Nαh
N u v

U x y

  
  

  
     (4) 

where α  is calculated for each element from, 
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where Pe  is the Peclet numbers, U  is mean 
resultant velocity and h  is element size as 
shown in Fig. 3. 
 
2.2.2 Discretization of momentum and energy 
equations 

The three-nodes triangular element is 
used in this study.  The element assumes linear 
interpolation functions for the velocity 
components, the pressure, and the temperature 
as  
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where   is transport property (u, v, p and T) 
and iN  are the element interpolation functions. 

To derive the momentum and the energy 
equations that correspond to the Streamline 
Upwind Finite Element scheme and the 
Streamline Upwind Petrov-Galerkin scheme, the 
Galerkin method of weighted residuals is 
employed by multiplying Eqs. (2b-d) with the 
weighting function, iN , except for the 
convection terms which the special treatment as 
described in the above sections is used.  
Integration by parts are then performed using 
the Gauss theorem to yield the element 
equations in the form, 
Momentum equations, 

  A u     px uR R  (6a) 

  A v        py v gyR R R     (6b) 

Energy equation, 

 TA T      T T

QR R                   (7) 

where the coefficient matrices  A  and TA    
contain the known contributions from the 
convection and diffusion terms.  Details of these 
matrices can be found in ref [10]. 
 
2.2.3  Discretization of pressure equation 

To derive the pressure equation, the 
method of weighted residuals is applied to the 
continuity equation, Eq. (2a).  Because the 
pressure term does not appear in the continuity 
equation, the relation between velocity 
components and pressure are thus required.  
Such relations can be derived from the 
momentum equations, Eqs. (6a-b) as,  
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where u

if and v

if  are the surface integral terms 
and the source term due to the buoyancy.    

By applying Eqs. (8a-b) into the continuity 
equations, the pressure equations can be written 
in matrix form with unknowns of the nodal 
pressure as 

   K p      u v bF F F    (9) 

where the details for these element matrices can 
also found in Ref. [10]. 



 The above element equations are 
assembled to yield the global equations for the 
velocity components, the temperature and the 
pressure equations.  Appropriated boundary 
conditions are then applied prior to solving for 
the new velocity components, temperature and 
pressure values.   
 
2.2.5  Computational procedure 

The computational procedure starts from 
assuming initial nodal velocity components, 
pressures, and temperatures.  The new nodal 
temperatures are computed using Eq. (7).  The 
new nodal velocity components and pressures 
are then computed using Eqs. (6a-b) and (9), 
respectively.  The nodal velocity components 
are then updated using Eqs. (8a-b) with the 
computed nodal pressures.  This process is 
continued until the specified convergence 
criterion is met.  Such segregated solution 
procedure helps reducing the computer storage 
because the equations for the velocity 
components, the pressure, and the temperature 
are solved separately. 

 
3. Results 

In this section, two example problems are 
presented.  The first example, Conjugate 
counter flow heat exchanger, is chosen to 
evaluate the finite element formulations and to 

validate the developed computer programs.  
The second example, conjugate natural 
convection and conduction from heated cylinder 
in square cavity, are used to illustrate the 
capability of the presented schemes in the 
analysis of conjugate heat transfer problems.  
 
3.1 Conjugate counter flow heat exchanger 
 The first example for validating the 
numerical scheme, a conjugate counter flow 
heat exchanger problem is selected as the 
second test case.  This heat exchanger consists 
of two parallel flow passages with widths 1a  and 

3a , separated by a solid plate with thickness of 

2a  as shown in Fig. 4.  The outer walls of the 
flow passages are assumed to be adiabatic.  
The same properties and uniform inlet velocity 
and temperature profiles are assumed for the 
hot and cold fluids.   
 

  
 
 
 

Fig. 4.  A conjugate counter flow heat exchanger. 

 
 
 

Fig. 5. Finite element model for conjugate counter 
flow heat exchanger. 
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Fig. 6. Predicted temperature contours at 5K  for a 

conjugate counter flow heat exchanger. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7. The temperature profiles at 2/Lx    
at 5K  for a conjugate counter flow  

heat exchanger. 

 

The parameters adopted in the computation are 
as follows, geometrical sizes 1.0321  aaa  
and 0.1L , the flow parameters in upper 
channel 2.01 u , 8001 T  , 33.133Re   and 

75.0Pr  , the flow parameters in lower channel 
1.02 u , 3002 T , 67.66Re   and 75.0Pr  , 

conduction ratio 5K .  The finite element 
model, consisting of 1,763 nodes and 3,360 
triangles as shown in Fig. 5, is used in this study.  

Fig. 6 shows the predicted temperature contours 
in entire domain.  The predicted temperature 
distributions at 2/Lx   from presented scheme 
is compared with the finite volume results from 
Chen and Han [3] as shown in Fig. 7.  The figure 
also shows good agreement of the solutions. 

 
3.2 Conjugate natural convection and 
conduction from heated cylinder in square cavity 
 The last example of a high temperature 
cylinder enclosed by a square cavity as shown 
in Fig. 8, is selected to demonstrate the use of 
the presented method for the problem with a 
more complex geometry.  Both the vertical side 
walls of the square cavity are isothermal.  The 
upper horizontal boundary is surrounded by a 
solid material.  The upper boundary of this solid 
region is considered as adiabatic.  The lower 
horizontal boundary of the fluid cavity is also an 
adiabatic boundary.  Due to the symmetry of 
flow solution, only the right half of the enclosure 
was analyzed.  The finite element model 
consisting of 1,821 nodes and 3,450 triangles, 
as shown in Fig. 9, is used in this study.  Figure 
10 shows the predicted streamline and 
temperature contours vary with the thermal 
conductivity ratios and the Rayleigh numbers.  
Figure 11 shows the predicted temperature 
distributions of lower adiabatic boundary at 

0y , interface of fluid-solid regions at 1y , 
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and the upper adiabatic boundary at 2.1y .  
This picture represents the different thermal 
conductivity ratios of K  0.1, 1, 5 and 10, 
respectively, at the Rayleigh number of 104 and 
is compared with the results from Dong and Li 
[13].  The figure shows good agreement of the 
solutions obtained from the presented scheme. 
 In addition, the average Nusselt number, 
Nu , was also investigated in this research, the 
average Nusselt number can be calculated by, 

1

2
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 meanNu Nu ds
r

 (20) 
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where cx , cy  are the center coordinates of the 
high temperature cylinder and r  is radius of 
cylinder. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Conjugate natural convection from heated 
cylinder in square cavity problem. 

 

 
 
 
 
 
 
 
 

Fig. 9. Finite element model for heated cylinder in 
square cavity problem. 

 

 Table 1 gives a comparison of Nu  at the 
cylinder’s surface with results of Dong and Li.  
From the table, it can be concluded that the 
overall mean Nusselt number increases with the 
increase of thermal conductivity ratios and the 
Rayleigh numbers.  The table shows good 
agreement of the solutions obtained from the two 
methods.  
 
4.  Conclusions 

 A coupled finite element method for 
conjugate heat transfer problems was 
presented.  The method combines the viscous 
thermal flow analysis of the fluid region and the 
heat transfer analysis in the solid region 
together.   
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Fig. 10.  Streamline and temperature contours for K  0.1, 1 and 10, at Ra  103, 104, and 105. 
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Fig. 11.  Compared the temperature distributions for 
conjugate natural convection and conduction from 
heated cylinder in square cavity for K  0.1, 1, 5  

and 10, all at Ra  104. 
 

 

The finite element formulation and its 
computational procedure were first described.  
The flow analysis used a segregated solution 
algorithm to compute the velocities, the pressure 
and the temperature separately for improving 
the computational efficiency.  The convection 
terms in the momentum and the energy 
equations were treated by the Streamline 
Upwind Petrov-Galerkin method to suppress the 
non-physical spatial oscillation in the numerical 
solutions.  All the finite element equations were 
derived and a corresponding computer program 
was developed.  The efficiency of the coupled 
finite element method has been evaluated by 
two examples that were previously performed 
using other methods.   
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These examples highlight the benefit of the 
combined finite element method that can 
simultaneously model and solve both the fluid 
and solid regions, as well as to compute the 
temperatures along the fluid-solid interface 
directly. 
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