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Abstract

The adaptive Delaunay triangulation is
combined with a finite element method for
analysis of two-dimensional crack propagation
problems. The content includes detailed
descriptions of the Delaunay triangulation with
mesh generation, node creation, mesh
smoothing, and adaptive remeshing using
object-oriented programming. The resulting
stress intensity factors and simulated crack
propagation behavior are used to evaluate the
effectiveness of the combined method. The
sample problem for predicting the stress
intensity factors of a single edge cracked plate
under mixed-mode loading are used to evaluate
the accuracy of the procedure. A sample
problem for predicting crack growth trajectory
in a single edge cracked plate with three holes
1s also simulated and the result assessed.

Keywords:  Adaptive meshing technique, Crack

propagation, Finite element method.

1. Introduction

The Delaunay triangulation, based on
the concept of the Voronoi diagram [1,2], is
one of the automated mesh generation
algorithms that has recently gained popularity.
In this paper, the domain discretization based
on the algorithm proposed by Weatherill and
Hassan [3] which constructs triangular mesh
for crack propagation analysis is described in
details. In addition, an adaptive remeshing
technique is developed and incorporated into
the Delaunay triangulation in order to improve
the solution accuracy of the finite element
method. The technique generates an entirely
new mesh based on the solution obtained from

Engineering Journal of Siam University

Page 1

the previous mesh; such that elements in
regions with large changes of solution
gradients become smaller and elements in areas
with little changes of solution gradients grow
larger. The pseudo-code procedures based on
object-oriented programming concept are

presented for the Delaunay triangulation
algorithm, the automatic node creation
procedure and the adaptive remeshing
technique.

The stress intensity factor is a critical
parameter in the prediction of fatigue crack
growths in crack propagation problems. The
standard six-node isoparametric elements are
used for modeling. In order to improve the
accuracy of the near-tip stress fields, elements
with mid-side nodes displaced from their
nominal positions to quarter points are
employed near the crack tip [4]. The nodal
displacements around the crack tip are then
used to determine the stress intensity factors
using the displacement extrapolation method
[5]. The example under mixed mode loadings,
1s modeled to evaluate accuracy and
effectiveness of the combined procedure. In
addition, the capability of the proposed
procedure is further demonstrated by the
simulation of a crack propagation trajectory in
a single edge cracked plate with three holes
under mixed-mode loading.  Solutions are
compared with both the numerical solutions, as
well as the experimental data.

2. Formulation

The stress intensity factors for the
fracture modes I and II, K; and Kj, represent
the intensity factors under opening and
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shearing modes, respectively. They may be
determined from,
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where E is the modulus of elasticity, v is the
Poisson’s ratio, x is the elastic parameter
defined by (3 - 4v) for plane strain and (3 - v) /
(1 + v) for plane stress problems, and L is the
element length. The x and v are the
displacement components in the x and y
directions, respectively; their  subscripts
indicate the position as shown in Fig. 1.

,— Crack

i

Fig. 1. Quarter-point triangular elements
around the crack tip

Crack propagation in practical problems
normally occurs under mixed mode loading.
Based on the maximum circumferential stress
theory [6], the direction of crack propagation &
may be computed from,

K,sinf+K,(3cos6-1)=0 ()

The finite element equations for
determining nodal displacements and stresses
can be derived from the governing partial
differential equations that represent the
equilibrium conditions. The six-node triangular
elements with mid-side nodes displaced from
their nominal positions to quarter points of the
crack tip, are used to form up a circular zone
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surrounding the crack tip to facilitate high
solution accuracy. The radius of the circular
zone is specified to be no larger than one-eight
of the initial crack length, with roughly one
element every 30 degrees in the circumferential
direction [7]. The crack growth simulation is
based on the maximum circumferential stress
and the increment of the crack length during
each crack propagation step is specified by the
user.

3. Delaunay Triangulation for Crack
Propagation Analysis

For a given set of points in space {Py},
=91 "n"the‘regions [ V;}. k= 1,0 n are
boundaries assigned to each point P; and
represent the space closer to P; than to any
other points in the set. Therefore, these convex
regions satisty Eq. (3), implies that boundaries
of the Voronoi diagram must lie half way
between the two points on either side of the
boundary. If all points which have some
segments of a Voronoi boundary in common
are joined, the resulting shape is a Delaunay
triangulation.

V,={P{p-P|<|p-P|Yizi] ()

3.1 Delaunay Mesh Generation Algorithm

The Delaunay triangulation algorithm
for constructing boundary triangles is based on
the in-circle criterion. The details of the
Delaunay triangulation algorithm are described
by Ref. [8]. The algorithm is implemented by
developing a computer program, which
summarized as a pseudo-code in the algorithm
I below with variables and parameters defined
in next section.

Algorithm I; DelaunayTriangulation (P, T,
p)

Let PO be
objects;
Let T0O be
objects;

the collection of node

the collection of mesh

PO0.Initialize;

TO-Thitiglize:
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t « T.FindTriangleContainNode (p) ;
TO « T.IncircleTriangles(t, joil) s
PO « TO0.DestroyTriangles() ;
T.CreateNewTriangles (PO, p);
T.AssignNeighborhoodTriangles;
End;

3.2 Automatic Node Creation Procedure

The Delaunay triangulation algorithm
described above does not explain the method of
creating nodes inside the domain. So far,
researchers have introduced several approaches
for creating new nodes inside the domain by
refining boundary triangles such that the set of
boundary points guide new node placements
[9,10]. The new node creation procedure for
geometry with crack developed in this paper is
extended from that proposed by Weatherill and
Hassan. The shape and size of triangles are
controlled by two coefficients, the Alpha and
the Beta coefficients. The Alpha coefficient
controls node density by changing the
allowable shape of the formed triangles. The
Beta coefficient controls the regularity of
triangulation by disallowing node within a
specified distance of each other to be inserted
in the same sweep of the triangles within the
field.

The main idea of the automatic node
creation procedure is the search for the triangle
that conforms to both Alpha and Beta testing
criteria and a new node placement at the
centroid of that triangle. New triangles can then
be created by Delaunay triangulation algorithm
as described in algorithm I. The key idea of the
procedure is summarized as pseudo-code in the
algorithm II below;

Algorithm II; MeshRefinement (P, T, alpha,
beta, iteration)

Let PO be the collection of node
objects;

For i=1 To iteration {
Do t « T.NextTriangle {
p «
t.ComputeTriangleCentroid() ;
p.dp «
t.ComputePointDistributionFunction() ;
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p.dm(1:3) «
t.DistanceCentroidToVertices () ;

p.Rejected = FALSE;
Boiriij=1>Te3 of
If (p.dm(j) < (alpha *
p.dp)) {
p-Rejected = TRUE;
Break;
¥i
Yi

If (Not p.Rejected) {
P0.Initialize;
PO «
T.FindInsertedNodeOfNearestTriangles;
Do pl « PO.NextNode |
If (distance(p, pl) <
(beta * p.dp)) {
P-Rejected = TRUE;
Break;
Vi
¥
Vi
If (Not p.Rejected)
P.AddNodeAsInsertedNode (p) ;
k3
Do p « P.NextInsertedNode ({
Call DelaunayTriangulation (P,

The point distribution function, dp; for
the node, p;, is computed from Eq. (4) where
node i is surrounded by M nodes [3].

1 M :
22 4)

dp; =

3.3 Adaptive Remeshing Technique
The adaptive remeshing technique
generates an entirely new mesh based on the
solution obtained from a previous mesh [11]. In
this paper, the technique is modified and
corporated into the Delaunay triangulation and
the finite element method to analyze crack
propagation problems. There are two main
steps in the implementation of the adaptive
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remeshing technique; the first step is the
determination of proper element sizes and the
second step is the new mesh generation.

To determine proper element sizes at
different locations in the domain, the von
Mises stress o are used as the indicator for
computing proper element sizes. As small
elements must be placed in the region where
changes in the von Mises stress gradients are
large, the second derivatives of the von Mises
stress at a point with respect to global
coordinates x and y are needed. Using the
concept of principal stresses determination
from a given state of stresses at a point, the
principal quantities in the principal directions X
and Y where the cross-derivatives vanish are
determined. The maximum principal quantity is
then used to compute the proper element size,
h;, by requiring the error to be uniform for all
elements,

Bk =k 1 - ='constant (5)

min “*max

where Anq 18 the maximum principal von
Mises stress quantity of all elements, A, is the
minimum element size specified by users, and
A; is the higher principal quantity of the
element that is considered,

} (6)

A= max{

The mesh regeneration, based on the
concepts of the Delaunay triangulation and the
mesh refinement as described by Algorithm I
and 1I, is combined with the adaptive
remeshing technique to generate a new mesh.
The new mesh is constructed using the
information  from the previous mesh
(background mesh). Node insertion 1is
performed in an element which contains the
background node that has point distribution
function smaller than Hmax and the average of
the distance to the three vertices of that
element. With this technique, the new mesh
thus consists of small elements in the regions
with large changes in solution gradients, and

oo
or?

oo

ar?

2
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large elements in the other regions where the
changes in solution gradients are small. The
process of adaptive remeshing technique is
summarized as pseudo-code below;

Algorithm III; AdaptiveRemeshing (P, T,

PO, Hmin, Hmax, threshold)

Do {
Do p « P0.NextInteriorNode {
If (p.hi < Hmax) {
Lt~
T.FindTriangleContainNode (p) ;
Pg
t.ComputeTriangleCentroid() ;
pg.dp <
t.ComputePointDistributionFunction() ;
pg.dm(1:3) <«
t.DistanceCentroidToVertices () ;
pg.Rejected = FALSE;
For j=1 To 3 {
Tf  (pgshits
pg.dm.Average Or pg.dm(j) < Hmin) {
pg.Rejected =
TRUE;
Break;
¥
Yi
If (Not pg.Rejected)
D.AddNodeAsInsertedNode (pg) ;
)i
s

Do p « P.NextInsertedNode ({
Call DelaunayTriangulation (P,
T Ao
i
} Loop Until (P.InsertedNodes <=
threshold) ;
End;

3.4 Mesh Generation Implementation

This section presents the main
algorithm for implementing together the mesh
generation from the Delaunay triangulation
(algorithm I), the mesh refinement procedure
(algorithm II), and the adaptive remeshing
technique (algorithm III). This main algorithm
is developed wusing the object-oriented
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programming concept that takes into account
the advantages of the encapsulation,
inheritance, and polymorphism capabilities.

In addition, the main algorithm has
incorporated a scheme for mesh generation
around the crack tips. The crack tip nodes are
first removed from the node-list prior to the
domain discretization. Such scheme avoids the
modification of the original Delaunay
triangulation (algorithm I) and the mesh
refinement procedure (algorithm II) previously
described. Then the rosette nodes around the
crack tips, with specified angle by the
parameter angle_increment, are generated as
depicted in Fig. 2 and added to the node-list.
After the domain has been discretized, the
crack tip nodes are inserted to form the rosette
elements around the crack tips. The
implementation of the main algorithm is
summarized in the algorithm IV below.

Algorithm IV; Main (P, T, angle_increment,
alpha, beta, iteration, Hmin, Hmax,
threshold, isadaptive)

Let BP be the collection of boundary
node objects that stored in segquence
of counter-clockwise direction for all
outside boundaries and clockwise
direction for all inside boundaries;
Let PO be the collection of background
node objects;

Let P be the collection of node
objects;

Let T be the collection of mesh
objects;

Let angle increment be the isosceles
triangle crack tip angle;

Let alpha be the constant that
controls shape of formed triangles;
Let beta be the constant that controls
regularity of the triangulation;

Let iteration be the number of loops
to refine meshes;

Let Hmin and Hmax be the minimum and
maximum element size, respectively;
Let threshold be the number of minimum
increasing nodes for each iteration;
Let isadaptive be the flag to generate
background or adaptive meshes;
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BP.Initialize;
P0.Initialize;
P.Initialize;
T.Initialize;

If (isadaptive) {
P0.ReadBackgroundNodes;
BP.RediscretizeBoundaryNodes;
iE

Else {

BP.ReadBoundaryNodes;

I

BP.MarkCrackTipNodes;

BP.CreateRosetteNodesAroundCrackTips (a

ngle increment) ;

BP.CreateConvexHull;

P.AddNode (BP.pl, BP.p2, BP.p3, BP.p4);

T.AddTriangle(tl, BP.pl, BP.p2,
BP.p3);
T.AddTriangle(t2, BP.p3, BP.p2,
BP.p4);

Do p « BP.NextBoundaryNode ({
Call DelaunayTriangulation(P, T,
p);

T.RemoveOQutsideDomainTriangles;

Call MeshRefinement (P, T, alpha, beta,
iteration) ;
If (isadaptive)

Call AdaptiveRemeshing(P, T,
P0, alpha, beta,

Hmin, Hmax, threshold) ;

T.MeshRelaxation;
T.LaplaceSmoothing;

Do p « BP.NextCracktipNode
T.CreateRosetteTriangularElements (p) ;
i
End;

A demonstration of a new point

creation inside a triangle with automatic point
creation procedure (Algorithm II) and the
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formation of new triangles by Delaunay
triangulation algorithm (Algorithm I) are
shown in Fig. 3. The values of both the Alpha
and the Beta coefficients that are 0.5 and 0.6,
respectively.

Fig. 2. Removal of the crack tip node and
creation of rosette nodes around the crack tip

4. Algorithm Evaluation

The fracture mechanics simulation with
finite element program is used to evaluate the
efficiency of the combined Delaunay
triangulation and the adaptive remeshing
technique. The entire procedure is first used to

determine the stress intensity factors for
problems with analytical solutions or
experimental data so that their results can be
compared. The procedure is then employed to
capture the crack trajectory by adapting the
mesh automatically with the crack growth.

4.1 Determination of Stress Intensity Factors

The geometry of the single edge
cracked plate and its final adaptive mesh are
shown in Fig. 4. The plate has an initial crack
length @ = 3.5 mm. The modulus of elasticity
and the Poisson’s ratio are 30x10° units and
0.25, respectively. The plane strain condition is
assumed in the analysis. The computed stress
intensity factors K; and Kj; from the adaptive
mesh are 33.99 and 4.57 comparing to the
reference values of 34.00 and 4.55 [12],
respectively.

Multi-connected domain ~ Boundary triangulation

N=127, E=140

Refinement No. 4
N=1,000, E=1,886

Refinement No. 3
N=684, E=1,254

Fig. 3. Refinement and smoothing of a mesh for compact tension specimen

Refinement No. 2
N=435, E=756

Refinement No. 1
N=232, E=350

SRR il LR

-Reﬁnement No. 5§
N=1,374, E=2,634

Final mesh after smoothing
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Fig. 4. Problem statement and the final mesh
of the single edge crack plate

4.2 Simulation of Crack Propagation

To simulate the crack propagation, the
first case of the experiment [13] was carried
out in this paper. Figure 5 shows the problem
statement with an initial crack length, a, and its
location, b, are 1.0 and 4.0 units, respectively.
The results of the adaptive finite element
meshes and the crack growth trajectory are
depicted in Fig. 6. The figures show that the
crack growth trajectory passes near the lower
hole and ended at the middle hole. The
predicted crack growth trajectory resemble
very well with the experimental results.

|
|

Initial Crack

e

“{lie—

f

{1}« 8

Fig. 5. Problem statement for the
simulation of crack propagation
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a Experiment Ref. [13]

" — Adaptive FEM

(d)

Fig. 6. Adaptive finite element meshes and
the crack growth trajectory for the single
edge cracked plate with three holes
under mixed-mode loading

5. Conclusions

Delaunay triangulation was combined
with the finite element method and the adaptive
remeshing technique for analysis of crack
problems under mixed mode loading. The
concepts of the mesh generation and the
adaptive  technique for two-dimensional
domain using object-oriented programming
were presented in details. Several examples
were employed to evaluate the accuracy of the
combined Delaunay triangulation, the finite
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element method, and the adaptive remeshing
technique. The combined procedure
demonstrates that the stress intensity factors for
geometries with different loadings and the
crack propagation trajectory can be predicted
and captured effectively.
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