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Abstract

A scheme of streamline upwind finite
element method using the 6-nodes triangular
element is presented. The method is applied to
the convection term of the governing transport
equation directly along the local streamlines.
Several examples are selected and used to
evaluate the method. Results show that the
scheme 1s monotonic and does not produce any
oscillation. In addition, an adaptive meshing
technique is combined with the method to
further increase the solution accuracy, and at
the same time, to minimize the computational
time and computer memory requirement.
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1. Introduction

Accurate numerical solution of the
convection dominated flow problem is one of
the difficult tasks to achieve. Central difference
method and the conventional Galerkin method
have consistently yield unphysical oscillatory
solutions.  One successful technique for
solving such problem is known as the upwind
algorithm which originally devised for finite
difference method [1]. In finite element
method, the widely used technique is known as
Streamline Upwind Petrov-Galerkin (SUPG)
method [2]. This method modifies the
weighting functions by using the local velocity
to dictate an upstream direction of these
functions. Such modification eliminates the
oscillatory behavior on some convection
problems. Another successful method is the
Streamline Upwinding Finite Element Method,
which originally proposed by Rice and
Schnipke [3]. The method evaluates
convection terms directly along the local
streamlines on the 4-nodes bi-linear element
instead of modifying the weighting functions.
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Calculations presented in their paper have
shown that the method is monotonic and
introduces artificial numerical diffusion. The
effect of numerical diffusion is to smear the
solution in area of high flow field gradients and
hence decreases the solution accuracy.

The accuracy in a numerical solution is
an important factor that must be considered
especially for large size problems. The
solution accuracy can be increased by using
small elements in the computational domain,
but it will require additional computer time and
data storage [4]. To reduce such difficulties, a
technique of adaptive meshing [5] is
incorporated in the computational algorithm.

In this paper, the procedure to compute
the convection terms along local streamlines
passing through the 6-nodes triangular
elements 1s presented. The triangular elements
are employed in order to combine effectively
with the adaptive meshing technique presented
herein. Finally, the finite element formulation
and the computer program have been verified
using several examples that have prior
numerical solutions.

2. Theoretical Formulation and Solution
Procedure
In this section, the transport equation is
selected as a typical equation for convective-
diffusion problem. Typical two-dimensional
transport equation in the Cartesian coordinates
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where p is the density, # and v are the velocity
components in x and y direction, [ is the
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diffusivity coefficient and ¢ is the quantity
being transported in the flow field.

2.1 Finite Element Algorithm

To derive the finite element equations,
the 6-nodes triangular element as illustrated in
Fig. 1 is used in this study. The Galerkin’s
method of weighted residuals is applied to the
governing equation (1) with the standard
weighting function, N. The element equations
are,

3

Fig. 1. The 6-nodes triangular elements.

P J'N[u@+v€ngQ
= Ox.,. 1.0V

) /

o, e, o

< Ok 0%

O ;
e OO
Oy 6}’} )

where Q is the element area. Then, the
diffusion terms on the right-hand side of (2) are
treated by performing integration by parts
using the Gauss theorem [6]. The special
treatment for the convection term is discussed
in the following section.

2.2 Streamline Upwind Formulation

The concept of the streamline upwind
formulation for convection terms is best
described by considering a pure convection
problem with no physical diffusion. In this
case, the Galerkin’s method of weighted
residuals yields,

0 %)
JN[pu%+pv%)dQ = {
2 0

— : (3)

With the streamline coordinates as shown in
Fig. 2, Eq. (3) can be rewritten as,
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where Ugs is the velocity in the streamline
direction. On an element it is assumed that [3],

pUj a8 constant
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Fig. 2. Streamline coordinates.
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Then, the element convection s

approximated as,
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The evaluation of Eq. (6) requires the location
of an upwind point every time a downwind
point is detected. In Figure 3, node 1 on this
element is called the “downwind node”
because the negative of the velocity vector at
this node points back into the element. In the
case of corner nodes, the method for finding
the downwind node is straightforward and can
be expressed mathematically as,

tano < tan O < tan 3 (7)
The condition of Eq. (7) must be satisfied on
any downwind node.

For the mid-side nodes, Fig. 4 shows the
condition that must be used to detect the
downwind node and can be written by the
following expression,

fry

V.-nz20 (8)
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where V is the velocity vector at mid-side node
and » is the normal vector on that side of the
element.

. Downwind node detection for
a corner node.

Fig.

Fig. 4. Downwind node detection for
a mid-side node.

Once a downwind node is detected, the mass
flow rates at each side of the element as shown
in Fig. 5 are calculated. The upwind point can
be found from these mass flow rates. Figure 6
shows the possible cases that could occur when
node 1 is the downwind node. In this figure,
the location of the upwind point (x¢; yu) can be
determined by the factor F; and Fx which are
calculated from the ratio of mass flow rates on
each side of the element and can be expressed

as,
F, = max{min{
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Fig. 6. Possible upwind points for
corner nodes.

After that, the upwind point is calculated from,
yy=(=F )y, + (= Fp)ys +(F, - Fr)y, (12)

Similarly, the quantity being transported at the
upwind point, ¢, is determined as,
gy =(1-F )y + (1 - FR)ps + (F - F)gy  (13)

Then the convection term in Eq. (6) when node
1 is downwind node can be evaluated from,

o
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To find the location of upwind point for
the mid-side nodes, the similar approach is
applied. Figure 7 (a-d) shows the possible
cases for the location of the upwind point when
node 6 is the downwind node. The figure can
be divided into 2 major cases, case A and B.
For case A (Fig. 7(a-b)), it happens when f3b <
(flatflb) and the factor F; and Fy can be
calculated from,

: : Fig. 7. Possible upwind points for
| il A% i
F, = max{mins——, 15,0 (15) mid-side nodes.
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The condition for case B (Fig. 7(c-d)) is f3a < 2 -

(f2a+f2b), the factor F; and Fj are, ; : >
Fig. 8. Convection matrix when node 1

J 3a ] ] is the downwind node.
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To find the location of the upwind point, the (@)
similar expression as given by Eq. (11-13) can L i
be used. 0 0 9 0 0 0 |#
OpnmiOne A0s. = 0 0| |#2
The final step is to construct the element I 0 At 4n 0 ol |¢;
matrix for the convection term. Figure 8 shows  »2U 52"\;' i e 0 o 14,
the convection matrix when node 1, which is O oL w0 e Gl
the comner node, is the only downwind node. (F, )0k (FacDA 0 JF, Fo 1 ;
For the mid-side node, such as node 6 in Fig. 7, 2 ! L
the convection matrices for case A and B are (b)
shown in Fig. 9(a-b) respectively. Fig. 9. (a) convection matrix for case A

(b) convection matrix for case B
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2.3 Adaptive Meshing Technique

The idea behind the adaptive meshing
technique presented herein is to construct a
new mesh based on the solution obtained from
the previous mesh. The new mesh will consist
of small elements in the regions with large
change in solution gradients and large elements
in the other regions where the change in
solution gradients is small. To determine
proper element sizes at different locations in
the flow field, the solid-mechanics concept for
determining the principal stresses from a given
state of stresses at a point is employed. Since
small elements are needed in the regions of
complex transport behavior, thus the
distribution of quantity being transported, ¢,
can be used as an indicator in the determination
of proper element sizes.

To determine proper element sizes, the
second derivatives of the quantity being

transported with respect to the global
coordinates x and y are first computed,
i
E-"_: : ox fﬁy (19)
¢ o°¢
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The principal quantities in the principal
directions X and Y where the cross derivatives
vanish, are then determined,

2
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The magnitude of the larger principal quantity

is then selected,
max( J (21)
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This value is used to compute proper element
size h at that locations from the conditions,
WA=

2
e < )
constant = h_, A .. (22

where h_. is the specified minimum element
size, and A, is the maximum principal
quantity for the entire model.

3. Results

In this section, three example problems
are presented. The first and the second
examples, the skewed flow field advection
problem and the thermal entry problem,
respectively, are chosen to evaluate the
performance of the streamline upwind
formulation for the analysis of pure convection
and convective-diffusion problem. The third
examples, Smith and Hutton test case, is used
to illustrated the efficiency of the combined
adaptive meshing technique and the streamline
upwind formulation.

3.1 Skewed Flow Field Advection Problem

The first example for evaluating the
streamline upwind formulation is the skewed
flow field advection problem. The problem is
the pure convection transport and always used
in several publications for evaluating the
accuracy and stability of proposed method in
treating the convection term. The
computational domain is simply a square
region as illustrated in Figure 10. The velocity
field is taken as uniform over the entire domain
at the angle of 60 degrees with respect to x-
axis.

For the boundary conditions, the value of
¢ is assigned along the inflow sides of the
computational domain as a step discontinuity.
Along the left side of the domain ¢ is one and
along the bottom side ¢ is also one for 0 <x <

0.2 and zero for 0.2 < x <1 as shown in Figure
10.
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Fig. 10. Skewed flow field advection problem.

The results from the current method and
the conventional approaches, such as standard
Galerkin and Streamline Upwind Petrov-
Galerkin (SUPG) method, are shown in Figures
11-12. As illustrated, the current method does
not exhibit any non-physical oscillation.
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Fig. 11. Comparative results for skewed
flow filed advection problem.
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Fig. 12. Plots of numerical results along the
outflow boundary from several
methods.
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3.2 Thermal Entry Problem

The second example is the thermal entry
problem [7] where the cold fluid flows through
a hot duct with a very high aspect ratio of the
cross-section (L >> g) as shown in Fig. 13.
Away from the side wall of the duct, the
temperature distribution is effectively two-
dimensional, thus the computational domain
and the appropriate boundary conditions can be
illustrated in Fig. 14.

_~hot wall

hot wal

Fig. 13. Thermal Entry Problem.

For  two-dimensional  advective-diffusion
problem, the governing equation as shown in
Eq. (23) is used,

oT oT *T T
Uu—+pv—=[> —— + I, 25
5 ox - oy ox* Loy’ )
where 7, =ﬁ19—,, p =L§,. Re and Pr are
PrRe* =y
the Reynolds and Prandtl numbers,
respectively.
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Fig. 14. Computational domain and boundary
condition for thermal entry problem.
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To compare the temperature distribution
along the center of the duct with a semi-
analytic solution [8], a fully developed velocity
distribution is assigned over entire domain as u
= 1.3(1 -y“’), v = 0 and the value of Pr and Re
are 0.7 and 100, respectively. Figure 15 shows
the comparison of the temperature distributions
from presented algorithm along the center of
the duct and the result from [8]. From the
figure, the result from the current method
follows the semi-analytic solution very well.

0.8 /
06 — Brown (8]
T(x) o Streamline upwind
0.4
02}
0.0
0.0 0.5 1.0 1.5 20

X

Fig. 15. Comparison of temperature
distributions along center of
computational domain.

3.3 Smith and Hutton Test Case

The third test case demonstrates the
capability of the combination of adaptive
meshing technique with the finite element
method developed. The problem was presented
by Smith and Hutton [9] and the computational
domain is shown in Figure 16. The velocity
field for this case is given by the following
expressions,

2y(1-x?) (24)

v = =2x(1- %) (25)

The resulting streamlines are shown in Fig. 16.

Along the inlet side, the distribution of ¢ is
given by,
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¢ = 1+tanh [(2x +1)10 ] (26)

The adaptive meshing technique starts
from creating a relatively uniform mesh as
shown in Fig. 17.  The figure also shows the
predicted result contours. The adaptive mesh
and the corresponding results are also shown in
Figure 17. For pure convection, the inlet
profile should propagate to the outlet section
without any diffusion. Figure 18 compares the
outlet profiles of the initial and the adaptive
mesh with the exact solution. The figure
shows the adaptive mesh provides higher
solution accuracy as compared to the initial
results because small elements are generated
automatically in the regions of high solution
gradients behavior.

“ }):
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Inlet O Qutlet x =1 i

x =-]

Fig. 16. Smith and Hutton test case.

Fig. 17. Initial and final adaptive mesh with
its numerical results.
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Fig. 18. Comparison of numerical results of the
initial and the adaptive mesh along the
outflow boundary.

4. Conclusions

This paper presented the adaptive
streamline upwind finite element method using
6-nodes triangular element for the analysis of
convective-diffusion problems. The streamline
upwind formulation was wused on the
convection term in transport equation. The
corresponding finite element equations were
derived and a corresponding computer program
has been developed. The capability of the
streamline upwind finite element algorithm and
the corresponding computer program has been
evaluated by examples that have prior
numerical solutions. The results showed that
the current formulation does not exhibit any
non-physical spatial oscillation. The current
method was also combined with an adaptive
meshing technique to improve the solution
accuracy. The adaptive meshing technique
generates an entirely new mesh based on the
solution obtained from a previous mesh. The
new mesh consists of clustered elements in the
regions with large change in the temperature
gradients to provide higher solution accuracy.
And at the same time, larger elements are
generated in the other regions to reduce the
computational time and the computer memory.
The combined finite element solution
algorithm and the adaptive meshing technique
has demonstrated the efficiency of the entire
process for improved solution accuracy.
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