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Abstract

A finite element method for solving the
steady viscous incompressible flow problems
using the characteristic-based split algorithm
with equal-order three nodes triangular element
is presented. The performance of the method
has been evaluated by solving several problems
that have exact and numerical solutions. An
adaptive meshing technique is incorporated to
improve the unsteady solution accuracy. The
performance of the combined adaptive mesh
movement technique and the characteristic-
based split algorithm is illustrated by solving
the problem of the flow past a cylinder.
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flow.

1. Introduction

The use of the finite element method to
solve fluid flow problems has increased its
poplarity during the past decades. This is due
to the fact that the governing differential
equations for general flow problems consist of
several coupled equations which inherently
nonlinear of convective terms. Together with
complex flow geometries and general boundary
conditions that increase the difficulty of the
problem, the finite element method is more
attractive as compared to other numerical
methods. During the past twenty years, several
finite element algorithms [1-3] were developed
to alleviate the computational effort in order to
capture complex flow fields and to suppress the
spatial oscillations from the weakness of the
standard Galerkin method on the convective
terms discretization.
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In this paper, the characteristic-based
split algorithm or the “CBS algorithm™ is
combined with adaptive meshing technique to
solve viscous incompressible flow problems.
The characteristic-based split algorithm is
selected for the flow analysis because of its
capability to provide the solution accuracy for
both steady and unsteady of fluid dynamics
problems. The algorithm allows equal-order
interpolation functions to be used for all
variables, therefore the complexity in deriving
the finite element equations is reduced. An
adaptive meshing technique is applied to
improve the finite element solution accuracy by
placing small elements in the regions of large
change in the solution gradients to increase the
solution accuracy. The predicted solutions are
compared with the exact solution, and the prior
numerical result. Finally, the adaptive
remeshing technique is combined with the CBS
algorithm to analyze the flow behavior past a
cylinder.

2. Finite Element Formulations

The fundamental laws used to solve
fluid motion in a general form are the law of
conservation of mass, conservation of
momentum, which constitute a set of coupled,
nonlinear, partial differential equations. These
governing differential equations for the two-

dimensional isothermal laminar viscous

incompressible flow are,

Mass Conservation:
op Ju !
E (1a)
ot Ox,

Momentum Conservation:
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where 1, j is the tensor index referring to the x
and y axis, respectively, p is the fluid density,

u. are the velocity components, 7. are the

i
stress components, and p is the fluid pressure.

The characteristic-based split algorithm
was first introduced by Zienkiewicz and
Codina [4] for solving different categories of
fluid dynamics problems. The procedure of
characteristic-based split algorithm is to use the
characteristic-Galerkin  method and the
operator splitting in order to solve uncoupled
equations for temporal discretization, while the
method of weighted residuals with Galerkin’s
criteria is used for spatial discretization to
derive the finite element equations.

2.1 Temporal Discretization

The characteristic-based split algorithm
for viscous incompressible - flow analysis
consists of three steps. In the first step, the
intermediate velocities of the momentum
equations are calculated by omitting the
pressure gradient terms. In the second step, the
change of the intermediate velocities is used to
determine the pressure by solving continuity
equation. Finally, the pressure is used as a
corrector to update the velocities of the
momentum equations in the last step. These
three steps can be written in the semi-implicit
form as follows,

Step 1: The intermediate velocity equations,

g , ot..
Au;, = At -—u‘.%ﬁ-l e
“0x; " pex,
+£“ki v L )
2 gxl “dx 200K
Step 2: The continuity equation,
2 _n+l " % 27508
o°p pile . 481% +28Au,. &P 3)
dxox. "Mt ox ox, Ox,0x,
Step 3: The velocity correction equations,
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2.2 Spatial Discretization

The three-node triangular element is
employed in this study. Both velocity and
pressure variables discretization use standard
Galerkin with the assume linear interpolation
shape functions as,

u=N, (Jc,y)uar (5a)
v=N, (x,y)va (5b)
p=N,(xy)p, (5¢)

where =123 and N are the element
interpolation functions.

The method of weighted residuals with
Galerkin’s criteria is employed to discretize the
finite element equations by multiplying Eqgs.
(2)-(4) with the weighting functions and
performing integration by parts using the Gauss
theorem [5] to yield the element equations
shown in the steps below,

Step I: The intermediate velocity equations,

[M1{Au} = At [{C} +{K,} - {R} ]’

A’ _
-SRI - Ry - R ©
Step 2: The continuity equation,
w1 & " \n
(K, 12} =G, )" ~ B} D

Step 3: The continuity equation,
w. i AL
(M) = (3w - SR 8)

In the above equations, the element matrices
written in the integral form are,

[M]= [ IN]Nde (9a)
e {N)[uj %} dQ  (9b)
K.}= % [{2—2’} 0,dQ (%)
(Rt [ iyar o)

cl=m L{%H% sz ] dQ (%)
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(91)

{p}= L{Z—:}s—i dQ (9k)

(p)=2 [V} 4 2

p ox, ox

where u is the average velocity of the element.
The semi-implicit form of CBS algorithm is

conditionally stable. The permissible time step
is governed by,

J dQ (91)

5

M=o (10)

where o is the Courant number (0<o < 1) and
v is the kinematic viscosity.

3. Results

In this section, three example problems
are presented. The first and second examples,
the unsteady flow over a moving boundary and
the lid-driven cavity flow, are chosen to
evaluate the algorithm performance. The third
examples, the flow past a cylinder, is used to
illustrate the capability of the combined
adaptive  meshing technique and the
characteristic-based split algorithm for viscous
incompressible flow problems.

3.1 The Unsteady Flow over a Moving
Boundary
The first example used for evaluating
the CBS algorithm is the unsteady flow over a
moving boundary. This example is selected
because it has exact solutions for comparison.
The problem statement is described in Fig. 1.
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The initial and boundary conditions of problem
are given by w(0,f) = 1.0 for t > 0 and u(y,0) =
u(1,r) = 0.0. Figure 2 shows the comparison of
the numerical results with the exact solution at
various times [6]. The figure shows good
agreement of the solutions.

wall

— 1= 1.0

Fig. 1. Problem statement of the unsteady flow
over moving boundary
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Fig. 2. Comparative solutions of the unsteady
flow over moving boundary with Re = 100

3.2 The Lid-Driven Cavity Flow

The problem of the flow circulation in a
closed cavity driven by a moving lid has been
widely used to evaluate new method
formulation. The flow circulation in a unit
square cavity is induced by a moving lid at the
velocity of # =1.0 to the right. The problem
statement and the finite element model
consisting of 10,201 nodes and 20,000
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elements are illustrated in Fig. 3. Figures 4(a)-
(d) show the predicted streamline contours at
various times. Figure 5 shows good agreement
of the wvelocity profiles along the -cavity
centered lines obtained from the present
algorithm and those presented Ref. [7].

P |
L |

1re

Fig. 3. Problem statement and finite element
model of the lid-driven cavity flow problem

Fig. 4. Predicted streamline contours at time:
(a)t=1;(b)t=2;(c) t=4; and (d) steady

3.3 The Flow Past a Cylinder

To evaluate the performance of the
adaptive meshing technique [8] combining
with the characteristic-based split algorithm for
viscous incompressible analysis, the problem
of flow past a cylinder is selected. The flow
past a cylinder is a fundamental fluid
mechanics problem of practical importance.
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Fig. 5. Predicted steady state streamline
contours
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Fig. 6. Problem statement of the flow past
cylinder

The flow field over the cylinder is
symmetric at low values of Reynolds number.
As the Reynolds number increases, flow begins
to separate behind the cylinder causing vortex
shedding which is an unsteady phenomenon.
The computational domain is shown in Fig. 6.
The problem is analyzed with different values
of the Reynolds numbers at 10, 20 and 30.
Figure 7 shows the time evolution of the
adaptive mesh and velocity contours at three
Reynolds numbers. Figure 8 compares the
reattachment length as the function of
Reynolds numbers with previous results [9].
The figure shows good agreement of the
solutions.
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Fig. 7. Adaptive mesh and corresponding
velocity contours: (a)-(b) Re = 10; (c)-(d)
Re =20; and (e)-(f) Re= 30
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Fig. 8. Comparative of reattachment length

4. Conclusions :

The  combined  adaptive  mesh
movement technique and a finite element
algorithm for steady and unsteady viscous
incompressible flow analyses was presented.
The finite element equations were derived from
the governing Navier-Stokes differential
equations using the characteristic-based split
algorithm.  All finite element matrices were
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derived in closed-form and a corresponding
computer program was developed. Two
examples with exact and numerical solutions
were used to validate the performance of the
characteristic-based split algorithm.  The
method was also combined with an adaptive
meshing technique to further increase the
overall analysis performance. The adaptive
meshing technique generates small clustered
elements in the regions of high solution
gradients to increase the solution accuracy.
Larger elements are generated in the other
regions to reduce the computational time as
well as the computer memory. The efficiency
of the combined adaptive mesh movement
technique and the characteristic-based split
finite element method was demonstrated by
using the example of a flow past a cylinder.
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